Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Allergy Clin Immunol ; 2023 May 27.
Article in English | MEDLINE | ID: covidwho-2328230

ABSTRACT

B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.

2.
Allergy ; 77(12): 3648-3662, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1956682

ABSTRACT

BACKGROUND: Although avian coronavirus infectious bronchitis virus (IBV) and SARS-CoV-2 belong to different genera of the Coronaviridae family, exposure to IBV may result in the development of cross-reactive antibodies to SARS-CoV-2 due to homologous epitopes. We aimed to investigate whether antibody responses to IBV cross-react with SARS-CoV-2 in poultry farm personnel who are occupationally exposed to aerosolized IBV vaccines. METHODS: We analyzed sera from poultry farm personnel, COVID-19 patients, and pre-pandemic controls. IgG levels against the SARS-CoV-2 antigens S1, RBD, S2, and N and peptides corresponding to the SARS-CoV-2 ORF3a, N, and S proteins as well as whole virus antigens of the four major S1-genotypes 4/91, IS/1494/06, M41, and D274 of IBV were investigated by in-house ELISAs. Moreover, live-virus neutralization test (VNT) was performed. RESULTS: A subgroup of poultry farm personnel showed elevated levels of specific IgG for all tested SARS-CoV-2 antigens compared with pre-pandemic controls. Moreover, poultry farm personnel, COVID-19 patients, and pre-pandemic controls showed specific IgG antibodies against IBV strains. These antibody titers were higher in long-term vaccine implementers. We observed a strong correlation between IBV-specific IgG and SARS-CoV-2 S1-, RBD-, S2-, and N-specific IgG in poultry farm personnel compared with pre-pandemic controls and COVID-19 patients. However, no neutralization was observed for these cross-reactive antibodies from poultry farm personnel using the VNT. CONCLUSION: We report here for the first time the detection of cross-reactive IgG antibodies against SARS-CoV-2 antigens in humans exposed to IBV vaccines. These findings may be useful for further studies on the adaptive immunity against COVID-19.


Subject(s)
Antibodies, Viral , COVID-19 , Farmers , Infectious bronchitis virus , Humans , Antibodies, Viral/immunology , COVID-19/prevention & control , Immunoglobulin G , Infectious bronchitis virus/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Cross Reactions , Poultry , Animals
3.
Clin Transl Allergy ; 11(7): e12065, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1439673

ABSTRACT

BACKGROUND: Since the first reports of coronavirus disease 2019 (COVID-19) in Wuhan, China, in December 2019, there have been 198 million confirmed cases worldwide as of August 2021. The scientific community has joined efforts to gain knowledge of the newly emerged virus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the immunopathological mechanisms leading to COVID-19, and its significance for patients with allergies and asthma. METHODS: Based on the current literature, recent advances and developments in COVID-19 in the context of allergic diseases were reviewed. RESULTS AND CONCLUSIONS: In this review, we discuss the prevalence of COVID-19 in subjects with asthma, attacks of hereditary angioedema, and other allergic diseases during COVID-19. Underlying mechanisms suggest a protective role of allergy in COVID-19, involving eosinophilia, SARS-CoV-2 receptors expression, interferon responses, and other immunological events, but further studies are needed to fully understand those associations. There has been significant progress in disease evaluation and management of COVID-19, and allergy care should continue during the COVID-19 pandemic. The European Academy of Allergy & Clinical Immunology (EAACI) launched a series of statements and position papers providing recommendations on the organization of the allergy clinic, handling of allergen immunotherapy, asthma, drug hypersensitivity, allergic rhinitis, and other allergic diseases. Treatment of allergies using biologics during the COVID-19 pandemic has also been discussed. Allergic reactions to the COVID-19 vaccines, including severe anaphylaxis, have been reported. Vaccination is a prophylactic strategy that can lead to a significant reduction in the mortality and morbidity associated with SARS-CoV-2 infection, and in this review, we discuss the proposed culprit components causing rare adverse reactions and recommendations to mitigate the risk of anaphylactic events during the administration of the vaccines.

4.
Allergy ; 76(12): 3659-3686, 2021 12.
Article in English | MEDLINE | ID: covidwho-1406540

ABSTRACT

During the past years, there has been a global outbreak of allergic diseases, presenting a considerable medical and socioeconomical burden. A large fraction of allergic diseases is characterized by a type 2 immune response involving Th2 cells, type 2 innate lymphoid cells, eosinophils, mast cells, and M2 macrophages. Biomarkers are valuable parameters for precision medicine as they provide information on the disease endotypes, clusters, precision diagnoses, identification of therapeutic targets, and monitoring of treatment efficacies. The availability of powerful omics technologies, together with integrated data analysis and network-based approaches can help the identification of clinically useful biomarkers. These biomarkers need to be accurately quantified using robust and reproducible methods, such as reliable and point-of-care systems. Ideally, samples should be collected using quick, cost-efficient and noninvasive methods. In recent years, a plethora of research has been directed toward finding novel biomarkers of allergic diseases. Promising biomarkers of type 2 allergic diseases include sputum eosinophils, serum periostin and exhaled nitric oxide. Several other biomarkers, such as pro-inflammatory mediators, miRNAs, eicosanoid molecules, epithelial barrier integrity, and microbiota changes are useful for diagnosis and monitoring of allergic diseases and can be quantified in serum, body fluids and exhaled air. Herein, we review recent studies on biomarkers for the diagnosis and treatment of asthma, chronic urticaria, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, anaphylaxis, drug hypersensitivity and allergen immunotherapy. In addition, we discuss COVID-19 and allergic diseases within the perspective of biomarkers and recommendations on the management of allergic and asthmatic patients during the COVID-19 pandemic.


Subject(s)
COVID-19 , Hypersensitivity , Rhinitis, Allergic , Biomarkers , Humans , Hypersensitivity/diagnosis , Immunity, Innate , Lymphocytes , Pandemics , SARS-CoV-2
5.
Allergy ; 76(2): 428-455, 2021 02.
Article in English | MEDLINE | ID: covidwho-1140086

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused an unprecedented global social and economic impact, and high numbers of deaths. Many risk factors have been identified in the progression of COVID-19 into a severe and critical stage, including old age, male gender, underlying comorbidities such as hypertension, diabetes, obesity, chronic lung diseases, heart, liver and kidney diseases, tumors, clinically apparent immunodeficiencies, local immunodeficiencies, such as early type I interferon secretion capacity, and pregnancy. Possible complications include acute kidney injury, coagulation disorders, thoromboembolism. The development of lymphopenia and eosinopenia are laboratory indicators of COVID-19. Laboratory parameters to monitor disease progression include lactate dehydrogenase, procalcitonin, high-sensitivity C-reactive protein, proinflammatory cytokines such as interleukin (IL)-6, IL-1ß, Krebs von den Lungen-6 (KL-6), and ferritin. The development of a cytokine storm and extensive chest computed tomography imaging patterns are indicators of a severe disease. In addition, socioeconomic status, diet, lifestyle, geographical differences, ethnicity, exposed viral load, day of initiation of treatment, and quality of health care have been reported to influence individual outcomes. In this review, we highlight the scientific evidence on the risk factors of severity of COVID-19.


Subject(s)
COVID-19 , Critical Illness , Disease Progression , Female , Humans , Male , Risk Factors , SARS-CoV-2
6.
Allergy ; 75(12): 3124-3146, 2020 12.
Article in English | MEDLINE | ID: covidwho-804350

ABSTRACT

In this review, we discuss recent publications on asthma and review the studies that have reported on the different aspects of the prevalence, risk factors and prevention, mechanisms, diagnosis, and treatment of asthma. Many risk and protective factors and molecular mechanisms are involved in the development of asthma. Emerging concepts and challenges in implementing the exposome paradigm and its application in allergic diseases and asthma are reviewed, including genetic and epigenetic factors, microbial dysbiosis, and environmental exposure, particularly to indoor and outdoor substances. The most relevant experimental studies further advancing the understanding of molecular and immune mechanisms with potential new targets for the development of therapeutics are discussed. A reliable diagnosis of asthma, disease endotyping, and monitoring its severity are of great importance in the management of asthma. Correct evaluation and management of asthma comorbidity/multimorbidity, including interaction with asthma phenotypes and its value for the precision medicine approach and validation of predictive biomarkers, are further detailed. Novel approaches and strategies in asthma treatment linked to mechanisms and endotypes of asthma, particularly biologicals, are critically appraised. Finally, due to the recent pandemics and its impact on patient management, we discuss the challenges, relationships, and molecular mechanisms between asthma, allergies, SARS-CoV-2, and COVID-19.


Subject(s)
Asthma/epidemiology , Hypersensitivity/epidemiology , Asthma/diagnosis , Asthma/therapy , Biomarkers , COVID-19 , Comorbidity , Dysbiosis , Exposome , Humans , Hypersensitivity/diagnosis , Hypersensitivity/therapy , Pandemics , Phenotype , Precision Medicine , Risk Factors
7.
Allergy ; 75(10): 2445-2476, 2020 10.
Article in English | MEDLINE | ID: covidwho-614472

ABSTRACT

With the worldwide spread of the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulting in declaration of a pandemic by the World Health Organization (WHO) on March 11, 2020, the SARS-CoV-2-induced coronavirus disease-19 (COVID-19) has become one of the main challenges of our times. The high infection rate and the severe disease course led to major safety and social restriction measures worldwide. There is an urgent need of unbiased expert knowledge guiding the development of efficient treatment and prevention strategies. This report summarizes current immunological data on mechanisms associated with the SARS-CoV-2 infection and COVID-19 development and progression to the most severe forms. We characterize the differences between adequate innate and adaptive immune response in mild disease and the deep immune dysfunction in the severe multiorgan disease. The similarities of the human immune response to SARS-CoV-2 and the SARS-CoV and MERS-CoV are underlined. We also summarize known and potential SARS-CoV-2 receptors on epithelial barriers, immune cells, endothelium and clinically involved organs such as lung, gut, kidney, cardiovascular, and neuronal system. Finally, we discuss the known and potential mechanisms underlying the involvement of comorbidities, gender, and age in development of COVID-19. Consequently, we highlight the knowledge gaps and urgent research requirements to provide a quick roadmap for ongoing and needed COVID-19 studies.


Subject(s)
Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Academies and Institutes , COVID-19 , COVID-19 Testing , Coronavirus Infections/pathology , Humans , Pandemics , Pneumonia, Viral/pathology , SARS-CoV-2
8.
Allergy ; 75(10): 2503-2541, 2020 10.
Article in English | MEDLINE | ID: covidwho-597826

ABSTRACT

In December 2019, China reported the first cases of the coronavirus disease 2019 (COVID-19). This disease, caused by the severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), has developed into a pandemic. To date, it has resulted in ~9 million confirmed cases and caused almost 500 000 related deaths worldwide. Unequivocally, the COVID-19 pandemic is the gravest health and socioeconomic crisis of our time. In this context, numerous questions have emerged in demand of basic scientific information and evidence-based medical advice on SARS-CoV-2 and COVID-19. Although the majority of the patients show a very mild, self-limiting viral respiratory disease, many clinical manifestations in severe patients are unique to COVID-19, such as severe lymphopenia and eosinopenia, extensive pneumonia, a "cytokine storm" leading to acute respiratory distress syndrome, endothelitis, thromboembolic complications, and multiorgan failure. The epidemiologic features of COVID-19 are distinctive and have changed throughout the pandemic. Vaccine and drug development studies and clinical trials are rapidly growing at an unprecedented speed. However, basic and clinical research on COVID-19-related topics should be based on more coordinated high-quality studies. This paper answers pressing questions, formulated by young clinicians and scientists, on SARS-CoV-2, COVID-19, and allergy, focusing on the following topics: virology, immunology, diagnosis, management of patients with allergic disease and asthma, treatment, clinical trials, drug discovery, vaccine development, and epidemiology. A total of 150 questions were answered by experts in the field providing a comprehensive and practical overview of COVID-19 and allergic disease.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Hypersensitivity/complications , Hypersensitivity/therapy , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , COVID-19 , Coronavirus Infections/complications , Humans , Hypersensitivity/immunology , Pandemics , Pneumonia, Viral/complications , SARS-CoV-2
9.
Allergy ; 75(7): 1564-1581, 2020 07.
Article in English | MEDLINE | ID: covidwho-245787

ABSTRACT

As a zoonotic disease that has already spread globally to several million human beings and possibly to domestic and wild animals, eradication of coronavirus disease 2019 (COVID-19) appears practically impossible. There is a pressing need to improve our understanding of the immunology of this disease to contain the pandemic by developing vaccines and medicines for the prevention and treatment of patients. In this review, we aim to improve our understanding on the immune response and immunopathological changes in patients linked to deteriorating clinical conditions such as cytokine storm, acute respiratory distress syndrome, autopsy findings and changes in acute-phase reactants, and serum biochemistry in COVID-19. Similar to many other viral infections, asymptomatic disease is present in a significant but currently unknown fraction of the affected individuals. In the majority of the patients, a 1-week, self-limiting viral respiratory disease typically occurs, which ends with the development of neutralizing antiviral T cell and antibody immunity. The IgM-, IgA-, and IgG-type virus-specific antibodies levels are important measurements to predict population immunity against this disease and whether cross-reactivity with other coronaviruses is taking place. High viral load during the first infection and repeated exposure to virus especially in healthcare workers can be an important factor for severity of disease. It should be noted that many aspects of severe patients are unique to COVID-19 and are rarely observed in other respiratory viral infections, such as severe lymphopenia and eosinopenia, extensive pneumonia and lung tissue damage, a cytokine storm leading to acute respiratory distress syndrome, and multiorgan failure. Lymphopenia causes a defect in antiviral and immune regulatory immunity. At the same time, a cytokine storm starts with extensive activation of cytokine-secreting cells with innate and adaptive immune mechanisms both of which contribute to a poor prognosis. Elevated levels of acute-phase reactants and lymphopenia are early predictors of high disease severity. Prevention of development to severe disease, cytokine storm, acute respiratory distress syndrome, and novel approaches to prevent their development will be main routes for future research areas. As we learn to live amidst the virus, understanding the immunology of the disease can assist in containing the pandemic and in developing vaccines and medicines to prevent and treat individual patients.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Immunity, Innate , Pneumonia, Viral/immunology , Animals , Antibodies, Viral/immunology , Betacoronavirus/chemistry , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/virology , Cytokines/immunology , Eosinophils/immunology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Lymphocytes/immunology , Lymphopenia , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/virology , SARS-CoV-2 , Zoonoses/immunology , Zoonoses/virology
SELECTION OF CITATIONS
SEARCH DETAIL